References and Notes
<A NAME="RD06707ST-1A">1a</A>
Nishimura Y.
Miyake Y.
Amemiya R.
Yamaguchi M.
Org. Lett.
2006,
8:
5077
<A NAME="RD06707ST-1B">1b</A>
Kerr WJ.
Watson AJB.
Hayes D.
Chem. Commun.
2007,
5049
<A NAME="RD06707ST-1C">1c</A>
Kerr WJ.
Watson AJB.
Hayes D.
Org. Biomol. Chem.
2008,
6:
1238
For applications of alternative carbon-centred organo-metallic reagents in deprotonation
reactions, see:
<A NAME="RD06707ST-2A">2a</A> Ph3CK:
House HO.
Kramar V.
J. Org. Chem.
1963,
28:
3362
<A NAME="RD06707ST-2B">2b</A> Ph3CLi, Ph3CK:
House HO.
Trost BM.
J. Org. Chem.
1965,
30:
1341
<A NAME="RD06707ST-2C">2c</A> AlMe3:
Jeffery EA.
Meisters A.
J. Organomet. Chem.
1974,
82:
307
<A NAME="RD06707ST-2D">2d</A> MesLi:
Woodward RB.
Logusch E.
Nambiar KP.
Sakan K.
Ward DE.
Au-Yeung B.-W.
Balaram P.
Browne LJ.
Card PJ.
Chen CH.
Chênevert RB.
Fliri A.
Frobel K.
Gais H.-J.
Garratt DG.
Hayakawa K.
Heggie W.
Hesson DP.
Hoppe D.
Hoppe I.
Hyatt JA.
Ikeda D.
Jacobi PA.
Kim KS.
Kobuke Y.
Kojima K.
Krowicki K.
Lee VJ.
Leutert T.
Machenko S.
Martens J.
Matthews RS.
Ong BS.
Press JB.
Rajan Babu TV.
Rousseau G.
Sauter HM.
Suzuki M.
Tatsuta K.
Tolbert LM.
Truesdale EA.
Uchida I.
Ueda Y.
Uyehara T.
Vasella AT.
Vladuchick WC.
Wade PA.
Williams RM.
Wong HN.-C.
J. Am. Chem. Soc.
1981,
103:
3210
<A NAME="RD06707ST-2E">2e</A>
n-BuLi, AlMe3:
Seebach D.
Ertaş M.
Locher R.
Schweizer WB.
Helv. Chim. Acta
1985,
68:
264
<A NAME="RD06707ST-2F">2f</A>
n-BuLi, AlMe3:
Ertaş M.
Seebach D.
Helv. Chim. Acta
1985,
68:
961
For both the efficacy and issues with reagents such as the commonly used lithium-based
amides, see:
<A NAME="RD06707ST-3A">3a</A>
Bakker WII.
Wong PL.
Snieckus V. In
Encyclopedia of Reagents for Organic Synthesis
Vol. 5:
Paquette LA.
Wiley;
Chichester:
1995.
p.3096
<A NAME="RD06707ST-3B">3b</A>
Heathcock CH. In
Modern Synthetic Methods
Vol. 3:
Scheffold R.
Wiley-VCH;
New York:
1992.
p.3
<A NAME="RD06707ST-3C">3c</A>
Caine D. In
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.1
<A NAME="RD06707ST-3D">3d</A>
Kowalski C.
Creary X.
Rollin AJ.
Burke MC.
J. Org. Chem.
1978,
43:
2601
For example, n-BuLi will deliver mostly addition products when used in a general sense with ketones.
Only in specific cases will n-BuLi act solely as a base reagent. For general information on the reactivity of n-BuLi, see:
<A NAME="RD06707ST-4A">4a</A>
Brandsma L.
Verkruijsse HD.
Preparative Polar Organometallic Chemistry
Springer;
Berlin:
1987.
<A NAME="RD06707ST-4B">4b</A>
Brandsma L.
Verkruijsse HD.
Synthesis of Acetylenes, Allenes and Cumulenes, A Laboratory Manual
Elsevier;
Amsterdam:
1981.
<A NAME="RD06707ST-4C">4c</A>
For the use of base reagent mixtures with n-BuLi, see ref. 2e and 2f.
<A NAME="RD06707ST-5">5</A>
For example, for GaEt3 to perform effectively in deprotonation reactions, 1.5 mol of the complex (i.e.,
4.5 equiv of base) was required at 125 °C; see ref. 1a.
<A NAME="RD06707ST-6">6</A>
Kerr, W. J.; Watson, A. J. B. unpublished results.
<A NAME="RD06707ST-7">7</A>
Dinsmore A.
Billing DG.
Mandy K.
Michael JP.
Mogano D.
Patil S.
Org. Lett.
2004,
6:
293
<A NAME="RD06707ST-8A">8a</A>
Starowieyski KB.
Lewinski J.
Wozniak R.
Chrost A.
Organometallics
2003,
22:
2458
<A NAME="RD06707ST-8B">8b</A>
Kamienski CW.
Eastham JF.
J. Organomet. Chem.
1967,
8:
542
<A NAME="RD06707ST-9A">9a</A>
Bassindale MJ.
Crawford JJ.
Henderson KW.
Kerr WJ.
Tetrahedron Lett.
2004,
45:
4175
<A NAME="RD06707ST-9B">9b</A>
Carswell EL.
Hayes D.
Henderson KW.
Kerr WJ.
Russell CJ.
Synlett
2003,
1017
<A NAME="RD06707ST-9C">9c</A>
Henderson KW.
Kerr WJ.
Moir JH.
Tetrahedron
2002,
58:
4573
<A NAME="RD06707ST-9D">9d</A>
Anderson JD.
García García P.
Hayes D.
Henderson KW.
Kerr WJ.
Moir JH.
Fondekar KP.
Tetrahedron Lett.
2001,
42:
7111
<A NAME="RD06707ST-9E">9e</A>
Henderson KW.
Kerr WJ.
Moir JH.
Chem. Commun.
2001,
1722
<A NAME="RD06707ST-9F">9f</A>
Henderson KW.
Kerr WJ.
Moir JH.
Synlett
2001,
1253
<A NAME="RD06707ST-9G">9g</A>
Henderson KW.
Kerr WJ.
Moir JH.
Chem. Commun.
2000,
479
<A NAME="RD06707ST-10">10</A>
Typical Experimental Procedure for the Deprotonation of Ketones Using (Isolated)
t
-Bu
2
Mg
A Schlenk tube was charged with LiCl (1 mmol, 42.5 mg) and flame-dried under vacuum.
The tube was purged three times with N2 before being cooled to r.t. and charged with t-Bu2Mg (0.5 M solution in THF, 0.5 mmol, 1 mL) and THF (9 mL). The mixture was stirred
for 15 min at r.t. before being cooled to 0 °C. Then, TMSCl (1 mmol, 109 mg, 0.13
mL) was added and the mixture was stirred for 5 min before addition of cyclohexanone
(2a, 1 mmol, 98 mg) as a solution in THF (2 mL) over 1 h via syringe pump. The reaction
mixture was stirred at 0 °C under N2 for 1 h before being quenched with sat. aq NaHCO3 solution (10 mL). The mixture was allowed to warm to r.t. before being extracted
with Et2O (1 × 40 mL and 2 × 25 mL). The combined organic extracts were dried (Na2SO4) and a representative sample was analysed by GC to obtain the ketone to silyl enol
ether. The solution was then filtered and concentrated in vacuo to afford a residue
which was purified by column chromatography eluting with 1% Et2O-PE to afford 1-trimethylsiloxycyclohexene (3a, 150 mg, 88%).13 Gas chromatography was carried out using a Hewlett Packard 5890 Series 2 Gas Chromatograph
fitted with a Varian WCOT Fused Silica Column containing a CP-SIL 19CB coating and
using H2 as carrier gas (80 kPa): (i) injector and detector temperature, 200 °C; (ii) initial
oven temperature, 45 °C; (iii) temperature gradient, 20 °C min-1; (iv) final oven temperature, 190 °C; and (v) detection method, FID.
<A NAME="RD06707ST-11">11</A> For the preparation of dialkylmagnesium reagents using 1,4-dioxane, see:
Wakefield BJ.
Organomagnesium Methods in Organic Synthesis
Academic Press;
London:
1995.
<A NAME="RD06707ST-12">12</A>
Typical Experimental Procedure for the Deprotonation of Ketones Using in situ Generated
t
-Bu
2
Mg
A Schlenk tube was charged with LiCl (1 mmol, 85 mg) and flame-dried under vacuum.
The tube was purged three times with N2 before being cooled to r.t. and charged with t-BuMgCl (1 M solution in THF, 1 mmol, 1 mL), 1,4-dioxane (1.05 mmol, 88 mg, 0.09 mL),
and THF (9 mL). The mixture was stirred for 15 min at r.t. before being cooled to
0 °C. Then, TMSCl (1 mmol, 109 mg, 0.13 mL) was added and the mixture was stirred
for 5 min before addition of 1,4-cyclohexanedione monoethylene ketal (2i, 1 mmol, 156 mg) as a solution in THF (2 mL) over 1 h via syringe pump. The reaction
mixture was stirred at 0 °C under N2 for 1 h before being quenched with sat. NaHCO3 aq soln (10 mL). The mixture was allowed to warm to r.t. before being extracted with
Et2O (1 × 40 mL and 2 × 25 mL). The combined organic extracts were dried (Na2SO4), and a representative sample was analysed by GC (see ref. 10) to obtain the conversion
value of ketone to silyl enol ether. The solution was then filtered and concentrated
in vacuo to afford a residue which was purified by column chromatography eluting with
1% Et2O-PE to afford 8-trimethylsilyloxy-1,4-dioxaspiro[4.5]dec-7-ene (3i, 160 mg, 70%).13
<A NAME="RD06707ST-13">13</A>
Product Data
1-Trimethylsilyloxycyclohexene (3a):14,15,16a,17 IR (CH2Cl2): νmax = 1668 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.18 [s, 9 H, Si(CH3)3], 1.48-1.54 (m, 2 H, CH2), 1.63-1.69 (m, 2 H, CH2), 1.97-2.03 (m, 4 H, 2 × CH
2), 4.86-4.88 (m, 1 H, CH).
1-Trimethylsiloxycyclopentene (3b):14,15,16b,18 IR (CH2Cl2): νmax = 1645 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.20 [s, 9 H, Si(CH3)3], 1.82-1.90 (m, 2 H, CH2), 2.24-2.29 (m, 4 H, 2 × CH
2), 4.62-4.63 (m, 1 H, CH).
6-Methyl-1-trimethylsilyloxy-1-cyclohexene (3c):14,15,17 IR (CH2Cl2): νmax = 1660 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 0.19 [s, 9 H, Si(CH3)3], 1.04 (d, 3 H, CH
3, J = 7.0 Hz), 1.36-1.41 (m, 1 H, CH), 1.45-1.49 (m, 1 H, CH), 1.57-1.59 (m, 1 H, CH),
1.78-1.82 (m, 1 H, CH), 1.98-2.02 (m, 2 H, CH2), 2.14-2.15 (m, 1 H, CH), 4.81 (td, 1 H, CH, J = 3.95, 1.20 Hz).
4-tert-Butyl-1-trimethylsilyloxy-1-cyclohexene (3d):9c,19,20 IR (CH2Cl2): νmax = 1672 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.19 [s, 9 H, Si(CH
3)3], 0.90 (s, 9 H, 3 × CH
3), 1.21-1.29 (m, 2 H, CH2), 1.78-1.85 (m, 2 H, CH
2), 1.98-2.09 (m, 3 H, CH and CH2), 4.84-4.86 (m, 1 H, CH).
4-Methyl-1-trimethylsilyloxy-1-cyclohexene (3e):9c,19,20 IR (CH2Cl2): νmax = 1669 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 0.18 [s, 9 H, Si(CH3)3], 0.95 (d, 3 H, CH3, J = 6.3 Hz), 1.29-1.34 (m, 1 H, CH), 1.62-1.73 (m, 3 H, CH and CH2), 1.93-2.00 (m, 1 H, CH), 2.05-2.09 (m, 2 H, CH2), 4.82-4.83 (m, 1 H, CH).
4-(tert-Butyldimethylsiloxy)-1-trimethylsilyloxy-1-cyclo-
hexene (3f):20 IR (CH2Cl2): νmax = 1668 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.06 {s, 3 H, Si[C(CH3)3]CH
3}, 0.07 {s, 3 H, Si[(C(CH3)3]CH
3}, 0.18 [s, 9 H, Si(CH3)3], 0.89 [s, 9 H, Si(C(CH3)3], 1.60-1.83 (m, 2 H, CH2), 1.97-2.16 (m, 3 H, CH and CH2), 2.17-2.27 (m, 1 H, CH), 3.84-3.93 (m, 1 H, CH), 4.66-4.73 (m, 1 H, C=CH).
1-Trimethylsilyloxycycloheptene (3g):21 IR (CH2Cl2): νmax = 1660 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.18 [s, 9 H, Si(CH3)3], 1.50-1.59 (m, 4 H, 2 × CH
2), 1.66-1.70 (m, 2 H, CH2), 1.97-2.01 (m, 2 H, CH2), 2.22-2.24 (m, 2 H, CH2), 4.86-4.88 (m, 1 H, CH).
4-Phenyl-1-trimethylsilyloxy-1-cyclohexene (3h):19,20 IR (CH2Cl2): νmax = 1669 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 0.24 [s, 9 H, Si(CH3)3], 1.86-1.93 (m, 1 H, CH), 1.96-1.99 (m, 1 H, CH), 2.06-2.11 (m, 1 H, CH), 2.19-2.34
(m, 3 H, CH and CH2), 2.76-2.78 (m, 1 H, CH), 4.97-4.98 (m, 1 H, CH), 7.19-7.34 (m, 5 H, C6H5).
8-Trimethylsilyloxy-1,4-dioxaspiro[4.5]dec-7-ene (3i):22 IR (CH2Cl2): νmax = 1671 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 0.15 [s, 9 H, Si(CH3)3], 1.81 (t, 2 H, CH
2, J = 6.6 Hz), 2.20-2.23 (m, 2 H, CH2), 2.25-2.28 (m, 2 H, CH2), 3.95-4.01 (m, 4 H, CH), 4.73 (m, 1 H).
1-Phenyl-1-trimethylsilyloxyprop-1-ene (3j):14,18,23,24 IR (CH2Cl2): νmax = 1686, 1652 cm-1. 1H NMR (400 MHz, CDCl3): δ (Z-isomer) = 0.17 [s, 9 H, Si(CH3)3], 1.76 (d, 3 H, CH3, J = 6.9 Hz), 5.35 (q, 1 H, CH, J = 6.9 Hz), 7.23-7.49 (m, 5 H, 5 × ArCH); δ (E-isomer) = 0.15 [s, 9 H, Si(CH3)3], 1.73 (d, 3 H, CH3, J = 7.3 Hz), 5.13 (q, 1 H, CH, J = 7.3 Hz), 7.23-7.49 (m, 5 H, C6H5).
(3,4-Dihydro-1-naphthyloxy)trimethylsilane (3k):16c,21 IR (CH2Cl2): νmax = 1638 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 0.38 [s, 9 H, Si(CH3)3], 2.42-2.47 (m, 2 H, CH2), 2.89 (t, 2 H, CH2, J = 7.8 Hz), 5.32 (t, 1 H, CH, J = 4.6 Hz), 7.21-7.36 (m, 3 H, 3 × ArCH), 7.54 (d, 1 H, ArCH, J = 7.4 Hz).
<A NAME="RD06707ST-14">14</A>
Bonafoux D.
Bordeau M.
Biran C.
Cazeau P.
Dunogues J.
J. Org. Chem.
1996,
61:
5532
<A NAME="RD06707ST-15">15</A>
House HO.
Czuba LJ.
Gall M.
Olmstead HD.
J. Org. Chem.
1969,
34:
2324
<A NAME="RD06707ST-16A">16a</A>
Commercially available from Aldrich Chemical Co., CAS# [6651-36-1], cat. no. 144819;
<A NAME="RD06707ST-16B">16b</A>
Commercially available from Aldrich Chemical Co., CAS# [19980-43-9], cat. no. 283126;
<A NAME="RD06707ST-16C">16c</A>
Commercially available from Aldrich Chemical Co., CAS# [38858-72-9], cat. no. 540390.
<A NAME="RD06707ST-17">17</A>
Kopka I.
Rathke MW.
J. Org. Chem.
1981,
46:
3771
<A NAME="RD06707ST-18">18</A>
Heathcock CH.
Davidsen SK.
Hug KT.
Flippin LA.
J. Org. Chem.
1986,
51:
3027
<A NAME="RD06707ST-19">19</A>
Graf C.-D.
Malan C.
Knochel P.
Angew. Chem. Int. Ed.
1998,
37:
3014
<A NAME="RD06707ST-20">20</A>
Graf C.-D.
Malan C.
Harms K.
Knochel P.
J. Org. Chem.
1999,
64:
5581
<A NAME="RD06707ST-21">21</A>
Rathore R.
Kochi JK.
J. Org. Chem.
1996,
61:
627
<A NAME="RD06707ST-22A">22a</A>
Crawford JJ.
Kerr WJ.
McLaughlin M.
Morrison AJ.
Pauson PL.
Thurston GJ.
Tetrahedron
2006,
62:
11360
<A NAME="RD06707ST-22B">22b</A>
Kerr WJ.
McLaughlin M.
Morrison AJ.
Pauson PL.
Org. Lett.
2001,
3:
2945
<A NAME="RD06707ST-22C">22c</A>
Loon H.-Y.
Lee S.
Kim D.
Kim BK.
Bahn JS.
Kim S.
Tetrahedron Lett.
1998,
39:
7713
<A NAME="RD06707ST-23">23</A>
Heathcock CH.
Buse CT.
Kleschick WA.
Pirrung MC.
Sohn JE.
Lampe J.
J. Org. Chem.
1980,
45:
1066
<A NAME="RD06707ST-24">24</A>
Davis FA.
Sheppard AC.
Chen B.-C.
Haque MS.
J. Am. Chem. Soc.
1990,
112:
6679